June 27th, 2019
The Politics of Machine Learning, pt. I
Terminology like "machine learning," "artificial intelligence," "deep learning," and "neural nets" is pervasive: business, universities, intelligence agencies, and political parties are all anxious to maintain an edge over the use of these technologies. Statisticians might be forgiven for thinking that this hype simply reflects the success of the marketing speak of Silicon Valley entrepreneurs vying for venture capital. All these fancy new terms are just describing something statisticians have been doing for at least two centuries.
But recent years have indeed seen impressive new achievements for various prediction problems, which are finding applications in ever more consequential aspects of society: advertising, incarceration, insurance, and war are all increasingly defined by the capacity for statistical prediction. And there is crucial a thread that ties these widely disparate applications of machine learning together: the use of data on individuals to treat different individuals differently. In this two part post, Max Kasy surveys the politics of the machine learning landscape.